Dveri-lubercy.ru

Дизайн и ремонт
9 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Полипропилен и ультрафиолет

ПВХ или полипропилен что лучше? Полиэтиленовые и полипропиленовые трубы — в чем разница?

Основная часть продукции строительного рынка представлена материалами из поливинилхлорида и полипропилена. Поэтому при обустройстве коммуникаций встает весьма актуальный вопрос: «ПВХ или пропилен – что лучше?». Ответить на этот вопрос можно, если более детально рассмотреть товары и их технические характеристики.

Поливинилхлорид, появившийся на рынке стройсырья в конце XX века, изначально был сырьем для производства линолеума. В дальнейшем его даже пробовали применять в изготовлении посуды. Однако в связи с тем, что данный материал содержит в своем составе токсичные вещества, высвобождающиеся при сжигании, производство кухонной утвари резко прекратилось. В то же время ПВХ (PVC) стал активно применяться в производстве труб.

Полистирол, изобретенный на несколько десятков лет позже поливинилхлорида, стал основным сырьем в производстве пластиковой посуды, обшивки для бытовой техники и электроизоляции. Позже ПП (PР), как и ПВХ нашел свое применение в сфере изготовления коллекторов и прочих деталей для трубопроводов.

Представляющие одну и ту же категорию сырья (пластик), полипропилен и ПВХ отличие все же имеют. Соответственно, изготовленные из них трубы тоже отличаются.

  1. Главные характеристики и преимущества материалов
  2. Максимально-допустимый температурный режим
  3. Способность противостоять внешним факторам воздействия
  4. Взаимодействие с биологической средой
  5. Использование в суровых условиях
  6. Поверхность материалов
  7. Эксплуатация при пониженных температурах
  8. Срок службы
  9. Износостойкость и герметичность
  10. Практичность применения
  11. Экологичность сырья

Мифы о полипропилене — ищем правду

Миф первый.

«Полипропилен универсален. Подходит для монтажа систем водоснабжения и отопления на любом объекте».

Это не так. Трубами из полипропилена могут без опаски пользоваться владельцы частных домов, которые самостоятельно выставляют параметры давления и температуры в системах, а также жильцы многоквартирных домов, где полипропилен внесен в проект. В остальных случаях прокладка труб из этого материала — определенный риск.

Многое в эксплуатации труб зависит от параметров температуры и давления. Их регулирует чаще всего система централизованного отопления (обеспечивает до 70-95 % жилого фонда РФ). Как известно, работа системы связана с перебоями в подаче теплоносителей — то сезонные катаклизмы, то испытания тепловых трасс. Как это сказывается на трубах? При росте давления резко падает срок службы полипропиленовых труб. Если при давлении 1-2 атмосферы трубы прослужат более 50 лет, то при 10-12 атмосферах, что бывает характерно для системы централизованного отопления, срок снижается до 5-10 лет.

С температурой история еще сложнее, для полипропилена она не должна превышать 75. 80 °C. Но для однотрубной системы допустима температура теплоносителя 105 °C, согласно СНиП. То есть трубы попросту не выдержат.

Идем дальше. Полипропилен чувствителен к внешним высоким температурам и не подходят для пожароопасных помещений. Чувствителен он и к ультрафиолету и не годится для прокладки внешнего водопровода, например, на садовом участке. При воздействии солнечного света полипропилен разрушается долго, но и дом строят не на 2-3 года.

Миф второй.

«Полипропилен — самый прочный материал».

Смотря о чем мы говорим. Полипропиленовые трубы обладают высокой химической стойкостью и хороши тем, что при деформации не рассыпаются. Тем не менее, они весьма уязвимы к ударам и гидроударам, механическим нагрузкам. При работе с такими трубами обращают пристальное внимание на производителя и качество материала. Часто на рынке встречаются тонкостенные трубы, которые не выдерживают никакой критики и при любом неловком движении прорезаются насквозь.

Кроме того, на строительном объекте всегда есть риск повредить материалы. Банальный кирпич может упасть сверху или тяжелый инструмент. И если стальным трубам ничего не будет, то полипропиленовые прикажут долго жить.

Полипропилен имеет низкую конструкционную жесткость, поэтому трубы в системе иногда провисают. Картинка уже не выглядит так аккуратно, как сразу после сварки и монтажа, и свидетельствует о поломке.

Миф третий — самый главный.

«Простая сборка и установка по сравнению со стальными трубами».

Главная претензия к стальным трубам — долгая трудоемкая сборка. Для сварки труб нужны соответствующие навыки и оборудование. Однако их можно собрать резьбовыми соединениями. Раньше — до прихода на рынок герметиков нового поколения — для уплотнения резьбы и сборки соединений использовали льняную прядь или ФУМ-ленту. Технология нанесения требовала специальных знаний и опыта.

Читать еще:  Как определить провод заземления в проводке?

Современные герметики — анаэробные гели или сантехнические полимерные нити — наносят в течение нескольких минут. Они просты в применении и доступны не только профессионалам, но и мастерам-любителям. Достаточно прочитать инструкцию.

Между временем сборки системы из стали и полипропилена уже стоит знак равенства. Тем более что полипропиленовые трубы не гнутся и для их монтажа также используются фитинги.

Интересно, что установка труб из полипропилена напрямую связана с таким понятием, как личная ответственность жильца.

Сталь заложена в проекты примерно 90% жилого фонда России. В квартирах установлены стальные трубы для систем отопления, водо- и газоснабжения.

При замене, например, стальных стояков водоснабжения на полипропиленовые, все проблемы, которые могут возникнуть во время эксплуатации — течь или разрыв трубы и последствия — решает собственник квартиры за свой счет. Стояки водоснабжения — общее домовое имущество. Их замену на аналогичные управляющая компания должна проводить бесплатно. Она же несет ответственность за качество и прочность стояков.

Трубы из полипропилена — альтернатива, но не замена стальным. Не будем забывать, что рынок России огромен и неоднороден. Не везде для потребителей доступны элементы, с помощью которых качественно собирают систему, а качество работ подрядчиков может желать лучшего. Часто бригада, работающая со сваркой стальных труб может обладать гораздо большей компетентностью, чем ремонтный рабочий, который вчера Вам устанавливал розетки, а сегодня берется развести трубопровод. Поэтому действовать «по старинке» в целях сделать свое жилье комфортным и безопасным — не ретроградство, а разумный подход.

Если вы все таки решили устанавливать полипропиленовые трубы в своем доме, тогда не забудьте позаботиться о надежной герметизации! Для этого вам пригодится уплотнительная нить — незаменимый помощник для полипропиленовых резьбовых соединений. Купить ее можно у нас на сайте!

Однако полимеры не лишены и существенных недостатков:

  • При нагревании прочность полимеров снижается. Как и все органические вещества, они горят, а под действием ультрафиолетовых лучей стареют (делаются хрупкими и разрушаются);
  • К недостаткам следует отнести и большой (в 10 раз больше, чем у стали) коэффициент температурного расширения; правда, эластичность полимеров частично компенсирует этот недостаток.

Технологи, производящие изделия из полимеров, стараются, и не без успеха, усилить их достоинства и уменьшить недостатки. Химическая промышленность во второй половине XX века освоила производство десятков полимеров, но массовое применение, в том числе и при производстве труб, нашли 5-7 главнейших из них.
Безусловными лидерами являются полиэтилен (РЕ), полипропилен (РР) и поливинилхлорид (РУС).
Указанные полимеры относятся к группе термопластичных. Они способны при нагревании переходить в пластично-вязкое состояние, а при охлаждении отвердевать.
Трубы из таких полимеров получают методом экструзии (выдавливания) с помощью обогреваемого шнека (пример простейшего экструдера, но только без обогрева — домашняя мясорубка). Трубы получаются с очень гладкой поверхностью (шероховатость полимерных труб примерно в 10 раз ниже, чем стальных).

Сфера применения полипропиленовых труб

В зависимости от вида и конструкции полипропиленовые трубы могут использоваться для транспортировки как инертных, так и химически активных жидкостей. В ряде случаев эта продукция может задействоваться при организации трубопроводов, предназначенных для обеспечения работы гидравлического оборудования (до 25 атм). Исходя из этого, основными сферами применения полипропиленовых труб являются:

  • системы отопления, а также горячего и холодного водоснабжения;
  • производственные линии транспортировки химических веществ и соединений;
  • системы «теплый пол»;
  • трубопроводы компрессорного оборудования;
  • климатическое и вентиляционное оборудование;
  • системы орошения, мелиорации и дренажа.

Применение полипропилена

За последние 50 лет синтетический пластик потеснил дерево, металл, глину на рынке материалов более чем на 30 %. Полипропилен следует за полиэтиленом, занимая второе место на рынке пластмасс. Из этого материала производят:

  • водопроводные трубы, газовые трубы, транспортные трубопроводы;
  • листовой материал различной толщины, цвета и профиля
  • прозрачную пленку для строительных нужд,
  • литые детали в машиностроении, легкой промышленности, других сферах производства;
  • упаковочный материал с уникальными свойствами пропускать пары оксида водорода;
  • одноразовую посуду;
  • строительные клеящие массы, замазки, липкие пленки;
  • шумопоглощающие покрытия;
  • волокна для износостойких ковровых покрытий;
  • инструменты для медицины, шприцы и элементы одноразовых индивидуальных изделий;
  • композитный материал, покрывая пленками металл, дерево и иные известные материалы.
Читать еще:  Как устанавливают сваи винтовые для фундамента?

Специальные сорта материала рассчитаны на использование в пищевой промышленности. Трубы с соответствующим сертификатом применяют для водопроводных сетей.

Сырье и процесс производства

Полипропилен – ткань из группы технических полотен, изготовленная с применением химического сырья. В качестве последнего используется нити пропилена (ПП).

При изготовлении полипропиленового волокна используется следующая схема:

  1. Извлечение. Сырьем для такового является сырая нефть.
  2. Создание. Газообразный мономер проходит реакцию полимеризации.
  3. Получение пластичного материала.
  4. Смешивание. Для получения полипропиленового полотна, который будет подходить для изготовления текстильного полотна, смола соединяется с различными вспомогательными веществами – наполнителем, пластификатором, стабилизатором.
  5. Охлаждение. После остужения пластик приобретает вид твердого единого куска либо небольших по размерам гранул.
  6. Переплавка на нити и разрезание последних в нужный размер.

При изготовлении полотна используются разные методики переплетения нитей. Нетканый полипропилен, как правило, производится из непрерывной нити путем склеивания либо прессования.

Ламинированный полипропилен отличается повышенной прочностью, не пропускает влагу, но продолжает оставаться устойчивым к истиранию.

Общие свойства пластиковых труб

Часто в быту принято упрощать деление труб на металлические и неметаллические. Все трубы, сделанные не из стали или меди, называют пластиковыми. Действительно, внешне полиэтиленовые и полипропиленовые изделия схожи и напоминают пластмассовые, свойства тех и других труб идентичны, оба вида:

  • низкая температура плавления, по сравнению с металлическими (при сильном нагреве они размягчаются и провисают);
  • малый вес, благодаря которому их легче транспортировать и устанавливать.
  • устойчивость к механическим повреждениям – ударам, вибрации;
  • они не боятся щелочных реагентов в водопроводной воде;
  • не проводят электрический ток;
  • подвержены разрушению под воздействием ультрафиолета;
  • не подлежат сгибанию, т.к. ломаются при сильном давлении на разрыв.

Существенный плюс неметаллических изделий для инженерных систем – стойкость к органическому и неорганическому осадку.

Металл взаимодействует с кислородом и солями щелочноземельных металлов (солями жесткости), находящимся в воде и приводит к образованию осадка, который постепенно утолщается, что совершенно не грозит полиэтиленовым и полипропиленовым трубам, которые не засоряются даже через десятилетия эксплуатации, т.к. имеют гладкую внутреннюю поверхность.

Как ультрафиолет влияет на строительные пленки

Добавление статьи в новую подборку

Строительных пленок множество: мы стелим их на кровлю, защищаем дом от лишней влаги, изолируем фундамент от воды, а стены – от ветра. И при всем этом, порой самим строительным пленкам нужна защита. Как не сократить срок службы стройматериала?

Долговечность строительных пленок определяется целым рядом факторов, в том числе и условиями хранения и эксплуатации. Важно защитить материал от ультрафиолета. Что произойдет, если этого не сделать, рассказал Руслан Кобозев, федеральный технический специалист направления «Строительные пленки» компании «ТЕХНОНИКОЛЬ».

Коротко об УФ-излучении

Существует ошибочное мнение, что строительным пленкам особый вред наносят солнечные лучи. На самом деле разрушительное влияние оказывает только ультрафиолет.

Ультрафиолетовое излучение (УФ) – электромагнитное излучение, спектр длин волн которого лежит в диапазоне между фиолетовой областью видимого спектра и рентгеновским излучением 400-100 нм. УФ-излучение в 1801 году открыл физик из Германии Иоганн Риттер. Он заметил, что за ультрафиолетовой областью спектра фотопластинка чернеет быстрее, чем в видимом диапазоне. Это наблюдение позволило сделать вывод, что такие лучи весьма активны.

Рисунок 1. Электромагнитный спектр

Основным источником УФ-излучения в природе является солнце, однако ультрафиолетовое излучение составляет всего около 3% от солнечного света. Оно невидимо человеческому глазу, зато любой строительной пленке может нанести непоправимый вред.

Чем УФ-лучи опасны для пленок

Строительные пленки состоят из полимеров – полипропилена или полиэтилена.

Рисунок 2. Молекула полиэтилена состоит из 160-210 тыс. мономеров

Полиэтилен – термопластичный полимер этилена, относится к классу полиолефинов. Является органическим соединением и имеет длинные молекулы …–CH2–CH2–CH2–CH2–…, где «–» обозначает ковалентные связи между атомами углерода.

Полипропилен менее плотный, чем полиэтилен, более твердый (стоек к истиранию), термостойкий (начинает размягчаться при 140°C, температура плавления 175°C), почти не подвергается коррозионному растрескиванию, обладает высокой чувствительностью к свету и кислороду (чувствительность понижается при введении стабилизаторов).

Читать еще:  Монтаж винтовых свай механизированным способом

Рисунок 3. Молекула полипропилена

Разрушительное влияние ультрафиолета происходит за счет уничтожения связей между атомами в полимерах под влиянием лучей этого спектра. Последствия такого неблагоприятного воздействия заметны визуально.

Они могут выражаться в:

  • ухудшении механических свойств и прочности,
  • повышении хрупкости,
  • выгорании (выцветании).

Описанные выше процессы (выцветание и изменение механических свойств) не связаны между собой – выцветание характеризует прежде всего стойкость красителей, используемых при производстве материалов, и поэтому потеря оригинального цвета пленки далеко не всегда означает изменение механических свойств материала.

Изменение цвета на поверхности материала и повышение хрупкости можно часто наблюдать на пластиковых изделиях, постоянно эксплуатируемых вне помещений: сиденьях на стадионах, садовой мебели, оконных рамах и т.д.

УФ-лучи воздействуют на поверхность и разрушают молекулярные связи.

Рисунок 4. Пленка, разрушенная под воздействием ультрафиолета

Строительные пленки неизбежно оказываются под прямым воздействием УФ-лучей в процессе возведения дома. Для того чтобы увеличить их долговечность, в компоненты сырья добавляют УФ-стабилизаторы. И при воздействии УФ-излучения рассеянные или отведенные лучи теряют силу.

Существуют вещества, которые принимают опасные излучения и в какой-то мере «жертвуют» себя. Применяют также стабилизаторы, которые ликвидируют опасность, рассеивая частицы излучения.

Рисунок 5. Пленка без УФ-стабилизаторов

Рисунок 6. Пленка с УФ-стабилизаторами

Стойкость конкретных изделий к негативным климатическим условиям определяется с учетом двух главных критериев:

  • химического состава полимера,
  • типа и силы воздействия внешних факторов.

При этом неблагоприятное влияние на строительные пленки определяется по времени их разрушения и типу воздействия: это моментальная, полная деструкция или малозаметные трещины и дефекты. Процесс полного разрушения пленки ускоряется при одновременном воздействии нескольких неблагоприятных факторов:

  • микроорганизмов;
  • тепловой энергии различной степени интенсивности;
  • промышленных выбросов, в составе которых присутствуют вредные вещества;
  • повышенной влажности;
  • рентгеновского излучения;
  • повышенного процента содержания в воздухе соединений кислорода и озона.

Устойчивость пленки к воздействию УФ-излучения и, следовательно, срок ее службы зависят от интенсивности излучения, а также количества и эффективности используемых стабилизаторов. Дополнительно интенсивность УФ-излучения может усиливать, например, его отражение от водной поверхности.

Сочетание стабилизаторов и красителей, вводимых в состав сырья, тоже влияет на срок службы пленки. Так, краситель на основе сажи сам по себе хороший УФ-стабилизатор, поэтому срок службы пленки из полипропилена черного цвета является наибольшим.

Однако для климатических зон с высокой интенсивностью излучения рекомендовано применять пленки, в составе которых, помимо специального красителя, содержатся качественные УФ-стабилизаторы.

Как видите, солнце опасно не только для человеческой кожи, но и для современных стройматериалов. Выбирайте строительные пленки с учетом своего региона, и ваша постройка прослужит дольше!

Полиэстер (полиэфир)

Полиэфирная веревка по прочности слегка уступает полиамидной, но в отличие от нее она не ослабевает во влажном состоянии. Она также обладает высокой устойчивостью к истиранию, не разрушается при нагревании и воздействии солнечной радиации. Известно, что она теряет только 10 % своей прочности после двух лет наружного использования.

Основным отличием полиэстера от нейлона является его относительно низкое растяжение под нагрузкой. Из-за этого свойства полиэфирная веревка подходит для применений, где эластичность нежелательна (такелажные стропы, гамаки, палатки, качели, шкоты, фалы). Она гибкая и мягкая даже при намокании, прекрасно справляется с жесткими погодными условиями.

Плюсы: не провисает, не вытягивается, большой срок службы под открытым небом, сохраняет прочность при намокании, устойчива к истиранию.

Минусы: дороже полиамида, тонет в воде, цветные волокна полиэфира могут обесцветиться, а белые стать коричневыми/зелеными в морской среде.

Применение: такелаж, лебедки, паруса, трос-лидер, растяжки, рыболовные снасти, хозяйственно-бытовые нужды.

Вывод: Полиэфирная веревка среди синтетических веревочных изделий имеет самую низкую растяжимость, а также лучшую стойкость к истиранию, ультрафиолету, химикатам. Она подойдет для самых разных применений на судах, в промышленности, повседневной жизни и везде, где требуется малорастяжимое, прочное и долговечное веревочное изделие.

Подведя итоги, предлагаем сравнительную таблицу, в которой приведены наиболее важные характеристики для трех рассмотренных выше синтетических материалов:

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector