Dveri-lubercy.ru

Дизайн и ремонт
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Минимальный процент армирования плиты перекрытия

Процент армирования конструкций из железобетона

Арматурный каркас является необходимой частью в железобетонных конструкциях. Цель его использования — усиление и повышение прочности бетонных изделий. Арматурный каркас изготавливается из стальных прутьев или готовой металлической сетки. Необходимое количество усиления рассчитывается с учетом возможных нагрузок и воздействий на изделие. Расчетная арматура называется рабочей. При укреплении в конструктивных или технологических целях производится монтажное армирование. Чаще используются оба типа для обеспечения более равномерного распределения усилий между отдельными элементами арматурного каркаса. Арматура выдерживает нагрузку от усадки, колебаний температур и прочих воздействий.

Степень армирования

Минимальная величина коэффициента армирования (0,05%) позволяет назвать изделие железобетонным.

Если металлические элементы поместить в бетон, но величина арматурной составляющей не будет соответствовать техническим требованиям ГОСТа, то это изделие относится к бетонным наименованиям с конструкционным укреплением и не допускается к эксплуатации. Для фундамента, колонн, несущих стен и балок степень армирования рассчитывается по формуле: К= (М1÷М2)x100; где

  • М1 — вес стального каркаса;
  • М2 — масса бетонного монолита.

Для создания арматурного каркаса предпочтительно используются прутья диаметром 12-14 мм.

Площадь сечения стержней обуславливает способность поддерживающего каркаса нести и распределять нагрузки. Чем больше диаметр прутьев, тем выше процент армирования и прочность сооружения. Обычно предпочитают стержни в 12—14 мм диаметром. Удельный показатель веса арматуры уменьшается с увеличением толщины бетонного слоя.

Непосредственные расчеты

Схема анкеровки плиты перекрытия.

Если нижний каркас должен доходить до последних перекладин, то его заводят за опору на длину базовой анкеровки, расчет которой производят по формуле:

lo, an = Rsp Asp/(Rbond us), где
Rsp – рассчитываемое сопротивление долевого сечения арматуры растяжению;
Asp – номинальная площадь арматуры (установленной);
Rbond – сопротивление сцепления каркаса и бетона;
Us – периметр по профилю арматуры (по номинальному диаметру).

После того как производят расчет анкеровки, необходимо разобраться, какие хомуты и стержни употребить и как их разместить.

Например, некоторые стержни, которые необходимо довести до опоры, обрывают в пролете, а стержни вязаной арматуры иногда отгибаются, причем тогда, когда их количество больше двух и если они двухсрезные. А когда это четырехсрезные хомуты, их число не должно превышать четырех и их тоже можно отгибать на опоры и на плиты.

Монолитные плиты перекрытия частично или полностью опираются по контуру (периметру), а иногда свободно опираются или имеют защемления на опорах. В конструкциях чаще всего используют консольные перекрытия, которые опираются на одну кромку, или такие плиты, которые опираются на углы (безбалочное перекрытие). Какие из них употребить, зависит от расчета, который производится довольно легко. Для него понадобится:

  • Лист;
  • Карандаш;
  • Линейка;
  • Калькулятор;
  • Знание необходимых формул.

Плиты, как и балки, могут быть однопролетные – разрезные (шарнирные и с нешарнирным опиранием), неразрезные – консольные (многопролетные).

Как рассчитывается расход арматуры на куб бетона

Согласно СП 52-101-2003 конструкцию можно назвать железобетонной, если площадь сечения продольных стальных стержней равна минимум 0,1 %, от площади сечения бетона. Максимальный процент содержания стальных стержней в бетоне равен 5, в местах стыковки, например колонн, этот показатель может доходить до 10. Рекомендуемый диапазон, это 0,5-3 % арматуры, от площади сечения бетона.

Исходя из конструктивных требований СП 52-101-2003, норма расхода арматуры для армирования железобетонных конструкций, находится в пределах от 20 до 430 кг на 1 м 3 бетона.

Таблица расхода арматуры

В данной таблице, рассчитан вес арматуры, необходимый для армирования железобетонных конструкций, в зависимости её количества в процентах от площади сечения бетона.

Содержания арматуры, %Масса арматуры на 1 м 3 бетона, кг
0.17.85
0.539.25
178.5
1.5117.75
2157
2.5196.25
3235.5
3.5274.75
4314
4.5353.25
5392.5

Перекрытие по профлисту

В этом случае рекомендуется взять профилированный лист марки Н-60 или Н-75. Они обладают хорошей несущей способностью. Материал монтируется так, чтобы при заливке образовались ребра, обращенные вниз. Далее проектируется монолитная плита перекрытия, армирование состоит из двух частей:

  • рабочие стержни в ребрах;
  • сетка в верхней части.

Армирование плиты перекрытия по профлисту

Наиболее распространенный вариант, когда в ребрах устанавливают по одному стержню диаметром 12 или 14 мм. Для монтажа прутов подойдут инвентарные пластиковые фиксаторы. Если нужно перекрыть большой пролет, в ребро может устанавливаться каркас из двух стержней, которые связаны между собой вертикальным хомутом.

В верхней части плиты обычно укладывается противоусадочная сетка. Для ее изготовления используют элементы диаметром 5 мм. Размеры ячейки принимаются 100х100 мм.

Моделирование перепада отметок плиты перекрытия

Рассмотрим случай в проектировании плит перекрытий, когда требуется выполнить устройство плит на разных отметках, но плиты должны быть соединены друг с другом монолитной стеной.

Читать еще:  Усиление плиты перекрытия в гараже над погребом

Особенность работы такой конструкции в том, что плиты, за счёт соединяющей их стены, вступают в совместную работу, и деформируются как балка двутаврового сечения, у которой полками служат сами плиты а стенкой – монолитная стена. Стенка будет воспринимать, преимущественно, касательные напряжения, плиты, в месте примыкания к стене, будут воспринимать мембранные усилия (сжатие и растяжение), тем самым обеспечивая работу двутавра на изгиб.

В качестве примера, рассмотрим конструкцию, изображённую на рисунке: плиты перекрытия, находящиеся на разных отметках, опираются на колонны, а в осях 2/А-Г, соединяются между собой монолитной стеной, которая, в свою очередь, опирается на монолитные стены в осях 2/А, 2/Г. Ввиду того, что конструкция целиком выполняется из монолитного железобетона, плиты в месте примыкания к стене образуют двутавровую балку с жёстким защемлением на опорах.

Для выполнения расчёта, к конструкции прикладывается нагрузка 0.6 т/м2 на поверхность плит. Моделирование выполняем в ПК САПФИР. В месте стыковки плит со стеной, необходимо получить согласованную сеть триангуляции, с шагом равным толщине стены, для этого, наиболее рационально, применить технологию, показанную в статье https://rflira.ru/kb/108/1216/

Расчёт модели в ПК ЛИРА САПР

На основании модели, выполненной в САПФИР, получаем модель в ПК ЛИРА САПР.

По результатам статического расчёта, получаем следующую картину деформации:

Анализ внутренних усилий в осях 2/Б-В

Если представить, что плиты, работающие совместно со стеной, образуют двутавровое сечение балки, то наибольший изгибающий момент, будет возникать в середине пролёта, а именно в осах 2/Б-В. Выделим фрагмент схемы, находящийся в середине пролёта.

Анализ внутренних усилий показывает, что в плитах наибольшую интенсивность имеют напряжения Ny, направленные, в рамках данной задачи, вдоль глобальной оси Y. Изгибающие моменты в направлении осей Х и Y незначительны. Исходя из этого, можно предположить, что при подборе арматуры, наибольшая площадь потребуется по направлению оси Y в верхней и нижней зоне плиты.

В стенке, внутренние усилия Ny, максимальны в месте примыкания к плитам. Изгибающий момент Мх, соизмерим с внутренним усилием Ny. На основании этого, можно предположить, что наибольшая площадь арматуры в стенах, потребуется по направлению оси Y в месте примыкания к плитам, а также по направлению глобальной оси Z (местной оси Х1 стены), в зоне растяжения.

Анализ внутренних усилий в осях 2/А

Поскольку опирание балки на стены жёсткое, то на опорах будет возникать максимальный изгибающий момент в верхней зоне, а также, максимальная поперечная сила. Проанализируем внутренние усилия в опорной зоне.

Анализ внутренних усилий показывает, что наибольшая концентрация напряжений, происходит в месте опирания конструкции на нижестоящую стену. Напряжения Nx, Ny имеют там наибольшую интенсивность, в плите и стенке двутавра.

Дополнительно, в стенке наблюдается большое значение внутренних усилий Nx в месте опирания её на противоположный край нижестоящей стены. Интенсивность изгибающих моментов не сопоставима с интенсивностью напряжений Nx, Ny, так что они не должны оказать существенного влияния на результаты подбора арматуры.

Подбор армирования

Для подбора армирования, выполним настройку вариантов конструирования, а также материалов для расчёта ж/б конструкций. Расчёт выполняется по СП 63.13330.2018.

Выполним расчёт армирования конструкции. Проанализируем мозаики продольного армирования в стене и примыкающих участках плит. Поскольку результаты армирования симметричны, относительно оси проходящей через середину пролёта, отобразим на экране результаты для участка длиной 3/5 пролёта от опоры.

Наибольшая интенсивность армирования по Y у нижней грани наблюдается в нижней плите в середине пролёта, т.е. в местах с наибольшими растягивающими напряжениями.

На опорных участках, наибольшая интенсивность армирования, наблюдается в верхней части стены. В верхней плите, на опорном участке, также требуется установить продольную арматуру, вдоль оси Y, у нижней грани, но её площадь меньше, чем площадь арматуры в стене.

Большая интенсивность армирования по оси Y в верхней зоне, наблюдается в середине пролёта, в нижней плите. В верхней плите, наибольшая интенсивность, наблюдается на опоре.

В плитах, наибольшее армирование по оси Х у нижней грани, наблюдается в нижней плите, на участках не примыкающих к стене.

В стене, армирование по Х у нижней (ближняя) грани, увеличивается по мере приближениям к опорной зоне, что соответствует работе балки на поперечную силу.

В плитах, наибольшая площадь арматуры по Х у верхней грани, требуется в верхней плите на опорных участках. Также, наблюдаются участки с большой интенсивностью армирования в нижней плите, в месте непосредственного примыкания к стене, а также, в месте опирания на нижестоящую конструкцию.

Читать еще:  Как перекрыть гараж рубероидом?

Максимальное армирование стены наблюдается в опорной зоне.

Разная интенсивность армирования стены у верхней (ближняя) и нижней (дальняя) граней, обусловлена действием изгибающего момента, передаваемого на стену плитами перекрытия, который вызывает растяжение нижней (ближняя) грани плиты.

В плитах, в пролёте и в опорной зоне, потребовалось установить армирование по расчёту в верхней и нижней зонах плиты, что обусловлено действием напряжений Nx, Ny.

В настоящее время монолитный железобетон (обеспечивающий произвольную форму изделий, свободу планировочных решений и многое другое) получил большее распространение и применение по сравнению со сборным железобетоном (ограниченная номенклатура сборных изделий и пролет). В то же время сборные изделия прошли проверку временем по надежности и долговечности, а их армирование является оптимальным с точки зрения некоего условного соотношения «материал — стоимость конструкции». В монолитных же конструкциях величина арматуры в большинстве случаев является переменной и зависит от многих исходных факторов: геологии, типа фундамента, нагрузки, геометрии здания

Это нужно понимать при проектировании монолитных конструкций и не идти на поводу у заказчиков, далеких от инженерного дела и желающих в первую очередь оптимизировать свои расходы на строительство.

Как известно, чтобы обеспечить необходимую прочность и устойчивость здания или сооружения, следует провести соответствующие расчеты и подобрать необходимое количество арматуры для восприятия действующих нагрузок. При этом в конструкциях должны быть соблюдены требования как по 1-й группе (прочность, устойчивость), так и по 2-й группе (прогибы, ширина раскрытия трещин) предельных состояний.

В практике проектирования сформировался определенный условный параметр, по которому можно оценить затраты металла в конструкции: содержание арматуры в бетоне (как правило, берут вес всей арматуры в конструкции — продольной и поперечной — и делят на объем ее бетона, получая параметр в кг/м 3 ).

При этом в действующих строительных нормах [1−3] такой параметр напрочь отсутствует и он никоим образом не регламентируется. В нормативах указывается только необходимость обеспечить в сечении элемента минимальный процент арматуры от площади бетона (min 0,05−0,25%) и опосредованно рекомендован оптимальный процент армирования в конструкциях на уровне примерно 3% (это опять же отклик оптимизации для сборных конструкций).

До какой-то степени величина содержания арматуры в конструкциях отражена в некоторых сметных нормативах [4, 5]. Там величина арматуры в бетоне находится в пределах 190- 200 кг/м 3 — опять же без привязки к различным изменчивым исходным данным.

Для оценки величины содержания арматуры в бетоне монолитных конструкций проведем небольшой численный эксперимент. Возьмем для примера фрагмент плиты размерами в плане 1,0×1,0 м с двумя арматурными сетками у каждой грани, имеющими шаг стержней 100×100 мм, и проследим изменение содержания арматуры в бетоне в зависимости от изменения некоторых исходных параметров: толщины плиты и диаметра арматуры (рис. 1).

Как видно из приведенных выше данных, даже при «идеальных» условиях проектирования (отсутствие поперечной арматуры, дополнительного армирования, различных элементов локального усиления величина содержания арматуры, например, для элемента толщиной 200 мм с размещенной в нем арматурой из двух сеток диаметром 10 мм составляет 123,2 кг/м 3 . При наличии же различных дополнительных факторов суммарное содержание арматуры в бетоне будет резко расти.

Довольно трудоемкую и рутинную работу по определению содержания арматуры в бетоне для некоторых отдельных элементов и всего сооружения в целом на начальном этапе проектирования (еще до начала разработки чертежей стадии КЖ/КЖИ) с довольно высокой точностью можно выполнить в программе SCAD++. В режиме «Экспертиза железобетона» постпроцессора «Железобетон», используя операцию Вес заданной арматуры (рис. 2), можно в реальном времени не только определить расход арматуры, но и заодно (что очень важно) проверить, насколько заданная арматура удовлетворяет необходимым критериям прочности конструкции согласно выбранным нормам проектирования.

При этом нужно помнить, что программа считает расход:

Суммарный расход арматуры и бетона в любом здании зависит от многих факторов, которые можно в некоторой степени скорректировать на начальной стадии расчета и проектирования. Основные факторы, которые влияют на расход бетона и арматуры в конструкциях и зданиях, приведены в табл. 1.

Таблица 1. Факторы, которые влияют на расход бетона и арматуры

ФакторСледствие
Инженерно-геологические условия строительной площадкиТип фундамента (свайный, плитный, ленточный)
Шаг сетки несущих вертикальных элементовПролет плит, их толщина (жесткость)
Размеры сечения колонн/пилонов/стенУдельный вес арматуры в бетоне
Класс бетона и арматурыРасход арматуры в сечении

В табл. 2 мы покажем на различных типах реальных зданий и сооружений, насколько изменчивой может быть величина содержания арматуры в бетоне и как она зависит от различных исходных данных — типа фундамента, шага несущих вертикальных элементов, толщины элементов, этажности здания, величины нагрузки

Читать еще:  Как лежат плиты перекрытия в панельных домах?

Более точно содержание арматуры в бетоне можно определить по формуле:

Назначение и особенности

Фундаментная плита является залитой из бетона монолитной конструкцией. Использовать монтаж и оборудование фундамента на основе такой плиты считается одним из самых надежных типов оснований пола, сколько по параметру несущей способности, так и по устойчивости дома к внешней динамической нагрузке по грунту.

В дополнение к вышеперечисленным достоинствам, можно добавить, что оборудование и монтаж цельнобетонной плиты своими руками позволяет оптимальным образом распределить по фундаменту поперечное напряжение дома. Вследствие чего остается минимальный процент опасности образования просадок дома, из-за сезонного пучения почвы.

Виды плитных фундаментов своими руками по грунту имеют только один минимальный но существенный недостаток – высокий процент материалоемкости, так как правильное оборудование монолитной плиты, согласно требованиям СНиП и ГОСТ, требует выбрать и использовать большой процент бетона и арматуры.

Расчет арматуры

Учитывая расчет, что в больших объемах металлическая или стеклопластиковая арматура под фундамент заказывается в тоннах, а на армирование фундамента своими руками требуется использовать большое количество материала, вам понадобится выполнить расчет необходимой длины арматуры, ее диаметр, после чего перевести его в массу.

Для примера возьмем фундаментную плиту габаритами 980*720 сантиметров. Расчет производится по следующему алгоритму:

  1. Выполняем расчет необходимого количества арматуры для поперечной укладки (учитывая шаг в 20 см) – 720/20= 36 прутьев длиною в 7.2 м: 36*7.2=259,2 метра на одну сторону каркаса, а поскольку нам нужно две стороны, мы получаем: 259,2*2= 518.4 метра.
  2. Расчет арматуры продольной укладки на армопояс для фундамента пола: 980/20=49; 49*9,2=450,8; 450,8*2= 901,6 метров.
  3. Общая длина арматуры, которая нам потребуется, составляет: 901,6+518,4= 1420 метров.
  4. Учитывая, что один погонный метр арматуры (допустим, 16-го диаметра), равен 1.58 кг, мы получаем: 1420*1,58=2243,6 килограмм арматуры.

Вес арматуры в зависимости от диаметра

Особенности выполнения работ по армированию

Для резки арматуры на прутья необходимого диаметра вам понадобится ручная болгарка, и круг по металлу, диаметром 125, либо 250 миллиметров. Если армирование плитного фундамента выполняется посредством арматуры имеющей средний диаметр 10-12 мм, то целесообразно резать по нескольку прутьев сразу, что несколько ускорит процент подготовительных работ.

Нарезку своими руками можно выполнять поэтапно, шаг за шагом – сперва можно поперечные прутья, затем продольные. Поскольку стандартный размер цельных арматурных прутьев составляет 12 метров, то в большинстве случаев у вас будут остатки по 2-3 метра, которые можно сваривать между собой, и укладывать в центре арматурного каркаса под армирование монолитной плиты.

Учитывайте, что согласно требований СНиП и ГОСТ раскладка и оборудование подразумевает, что армирующий каркас должен быть утоплен в фундаментной плите на глубину как минимум на 5 сантиметров, поэтому прутья необходимо сваривать или резать на 10 сантиметров короче, чем соответствующие размеры плиты.

Основные ошибки монтажа

Для обеспечения фундамента нужными свойствами, защиты его от разрушений необходимо строго выдерживать технологию армирования. Как правило, малоопытные строители допускают типовые ошибки:

  • на залитый бетонный раствор не натягивают полиэтиленовый материал. Цементное молочко вытекает, на поверхности появляются трещины;

  • засыпав подушку из песка и щебня, многие пренебрегают ее утрамбовкой. Фундаментная основа дает усадку, образуются трещины;
  • на установленной опалубке не проводится заделка щелей, через которые протекает растворная смесь, что влечет за собой появление неровностей;
  • плохая изоляция плиты от поверхности почвы приведет к преждевременному разрушению фундаментной основы, а восстановительные работы обойдутся достаточно дорого;
  • ошибкой является применение в качестве спейсеров камней;
  • арматурные прутья во время монтажных работ фиксируются в почвенном слое, металл подвергается коррозии и быстро разрушается;
  • перед устройством фундамента не насыпается подушка из песчано-щебневой смеси, от чего показатель прочности плиты снижается. Еще одна характерная ошибка – для устройства подушки используют только щебенку, а ведь минимальный процент содержания песка в подушке под фундаментную плиту перед ее армированием должен быть в пределах сорока;
  • шаг размещения стержней сетки превышает допустимый максимальный предел в сорок сантиметров, или вовсе не соответствует расчетным данным по нагрузочным воздействиям;
  • со стороны арматурных торцов нет защитного слоя из бетонного раствора, и металл раньше времени подвергается коррозии;
  • под установкой стен и колонн нет вертикальных арматурных стержней, и нагрузочные усилия распределяются неравномерно.

Это наиболее грубые ошибки, способные однозначно оказать негативное воздействие на эксплуатационные показатели фундаментной основы. Есть и более неочевидные особенности, про которые могут рассказать только опытные специалисты.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector